2-Input Cosmology Calculator

Explore the interconnectedness of cosmological parameters within the Will Geometry framework. This tool demonstrates how the entire cosmos can be described by specifying just two fundamental values. All other parameters emerge directly from the core geometric relations.

Core Geometric Equations

The calculations are based on the following scale-invariant formulas. These equations link the dynamic and scale inputs to all major cosmological quantities without free parameters.

Fundamental Parameters

$\kappa^2 = \frac{R_s}{r_d} = \Omega$
$\beta^2 = \frac{R_s}{2r_d} = \frac{\kappa^2}{2}$

Derived Quantities

$R_s = \frac{2 G m_0}{c^2}$
$H = \frac{c}{r_d} = \frac{\kappa^2 c}{R_s}$
$\Lambda = \frac{\kappa^2}{r_d^2} = \frac{\kappa^2 H^2}{c^2}$
$\rho = \frac{\kappa^2 c^2}{8 \pi G r_d^2} = \kappa^2 \rho_{max}$

Interactive Calculator

1. Select Two Inputs

Or Load Presets

Derived Cosmological Parameters

Quantity Value

✨ Gemini-Powered Analysis

Use the buttons below to ask Gemini for an AI-powered analysis of the calculated results.

Compact Summary

All late-time “dark-energy” relations emerge from a single algebraic identity once the radial scale $r_d$ is specified:

$\Lambda r_{d}^{2}=\kappa^{2} \;\Longleftrightarrow\; \Lambda=\frac{\kappa^{2}H^{2}}{c^{2}} \;\Longleftrightarrow\; \rho_\Lambda=\kappa^{2}\rho_{\max}$

No additional fields, free parameters or metric assumptions are required.

$\text{COSMOS} \equiv \text{LOGOS} \equiv \text{GEOMETRY}$